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SUMMARY 

This paper presents an efficient algorithm, based on a well-known algorithm for 
the traveling salesman problem, for scheduling aircraft arrivals into major terminal 
areas. The algorithm permits, but strictly limits, reassigning an aircraft from its 
initial position in the landing order. This limitation is needed so that no air- 
craft or aircraft category is unduly penalized. Results indicate, for the mix of 
arrivals investigated, a potential increase in capacity in the 3 4 %  range. 
more, it is shown that the computation time for the algorithm grows only linearly 
with problem size. 

Further- 

INTRODUCTION 

Airport capacity is not keeping pace with rapidly growing airline traffic, 
particularly at major terminal areas. Current air traffic control (ATC) procedures 
try to sequence arrivals in first-come-first-serve (FCFS) order. One potential 
means of achieving capacity gains is t o  modify the FCFS sequence, since the minimum 
separation between two aircraft is Tot a constant, but rather a function of the 
weight categories of the aircraft pair. From a scheduling standpoint, the ideal 
situation would be to bunch all aircraft of the same type; however, this is not 
realizable in actual controller operations. Hence the scheduling problem discussed 
here is concerned with only a limited deviation from the FCFS order. 

This paper presents a n  efficient algorithm for aircraft scheduling, based on a 
well-known algorithm for the traveling salesman problem. 
strictly limits, reassigning an aircraft from its FCFS position. The algorithm has 
been implemented on a VAX computer for use in simulation studies and has consis- 
tently produced the best-known solution to a variety of test cases in a small amount 
of time. 

The algorithm permits, but 

PROBLEM STATEMENT 

In 1976, Roger Dear introduced the concept of Constrained Position Shifting 
(CPS) wherein aircraft must be scheduled within maximum position shift (MPS) of 
their original FCFS order (ref. 1 ) .  
the new schedule is implementable. In general, it is not feasible to reassign an 
aircraft to an arbitrary landing time far from its initially scheduled time. 

The point of this restriction is to ensure that 
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The FAA has created specific regulations regarding the separation distance of 
The corresponding time-separation matrix, aircraft based on their weight category. 

T, used in this study is given in table 1. 

TABLE 1.- MINIMUM TIME-SEPARATION MATRIX (sec) 

Second to land 

Small Large Heavy 

First Small 110 78 78 
to Large 160 78 78 
land Heavy 220 125 104 

Definition: The aircraft scheduling problem is, 

Given an initial ordering of N aircraft A1,A2, ..., AN, with 
corresponding weight categories 
routes R(A,),R(A2), ..., R(AN), and the time separation matrix T, find a 
procedure which will produce a one-to-one mapping function, S, such that 

W(Al),W(A2), ..., W(A,), following approach 

IIAi - S(Ai)]I <=  MPS all i (lb) 

If R(A ) = R(Ak) and j > k then S(A ) > S(Ak) (IC) j j 

where the objective is to minimize 

T{SIW(Ai)l, SIW(Ai+,)l) for i = 1 ,  N - 1 

In other words, the new schedule must satisfy: 

1. The first aircraft must be scheduled first in the revised schedule. 

2. All aircraft must be scheduled within MPS slots of their original FCFS 
order. 

3.  Planes following the same incoming route may not pass one another. 

where the objective is to minimize the time at which the Nth aircraft is landed. 

The solution is then the vector S(Ai), an ordering of the N aircraft. Thus 
a solution is a list of the aircraft in their new landing order. 
solution must be produced in a reasonable amount of time. 

Further, the 

This is a combinatorial optimization problem with a large number of con- 
straints. Figure 1 indicates a number of possible solution techniques. The middle 
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Figure 1.- Different approaches to TSP. 

row represents three approaches to the problem and the bottom row indicates three 
subcategories of the heuristic approach. Roger Dear's method will be described 
briefly later. The algorithm described by this paper falls under the category of 
tour improvement techniques. 

THE TRAVELING SALESMAN PROBLEM 

A close analogy to this scheduling problem is the well-known Traveling Salesman 
Problem (TSP). 
of N given cities once and only once, starting from any city and returning to the 
city of origin. What tour should he choose to minimize the total distance trav- 
eled?" 
the time separation matrix shown earlier, and the restriction of finishing the tour 
where it was started is removed. 
existing work done on the TSP (ref. 2). Though techniques which guarantee optimal 
solutions do exist (e.g., branch and bound) they generally require prohibitive 
amounts of computer time and memory for even moderately sized problems. It has been 
shown, in fact, that the TSP is NP-complete (i.e., there is no way to ensure finding 
the optimal solution in polynomial time) (ref. 3 ) .  One natural approach, then, is a 
modification of these techniques which sacrifices some accuracy for a savings in 
computation time. 

The TSP is often stated as, "A salesman is required to visit each 

In the aircraft scheduling problem, intercity distances are replaced with 

With these changes we can lean on the wealth of 
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Several computational studies have shown that certain heuristic approaches can 
provide optimal or nearly optimal solutions very quickly. Memory requirements are 
generally minimal and computational time usually grows only as a polynomial function 
of problem size (as opposed to exponentially as is the case for exact techniques). 

The particular algorithm described here stems largely from the work of Lin and 

They describe a heuristic procedure for this type of problem as a 
Kernighan who developed what is probably the most effective heuristic for the TSP 
(refs. 4 and 5). 
four-step process: 

1. Generate a pseudorandom feasible solution; i.e., a set (actually a vector) 
T that satisfies some criteria C. 

2. Attempt to find an improved feasible solution T' by some transformation 
of T. 

3 .  If an improved solution is found; e.g., f(T') < f(T), then replace T by 
T' and repeat from step 2. 

4. If no improved solution can be found, T is a locally optimal solution. 
Repeat from step 1 until computation time runs out, or the answers are satisfactory. 

Extensions of their work to the asymmetric case were suggested by Kanellakis 
and Papadimitriou (ref. 6). 

The algorithm presented here uses the aforementioned conditions to produce 
precisely characterized locally optimal solutions very quickly. 
the algorithm, consider the concept of 1-optimality. 

Before describing 

Definition: A sequence of N aircraft is said to be 1-optimal (or simply 
1-opt) if no one aircraft in the sequence can be moved r slots, r <=  1, in such a 
way as to improve the schedule. (This is a modification of the original definition 
given by Lin (ref. 41.) 

Note that all schedules are 0-opt (i.e., 1 = 0) and that a schedule which is 
1-opt is also 1' = opt for 1' < 1. Setting 1 = MPS, the algorithm produces a 
large number of MPS-opt solutions very quickly, while always storing the best 
solution to date. For the actual implementation of the algorithm, see the code in 
appendix A. 

A solution which is 1-opt need not be the globally optimal solution. The 
definition of 1-opt, for example, does not consider changes in the schedule involv- 
ing the repositioning of several aircraft simultaneously. 
incorporating a "random feasible tour generator. '' 

This is accomplished by 

The actual mechanics of the algorithm are as follows: The FCFS order is taken 
as the initial schedule and the time required to land all of the aircraft is com- 
puted. Then, by randomly selecting aircraft which are adjacent in the FCFS schedule 
and switching their order, a new schedule, but one still feasible in the sense of 
the MPS constraint, is generated. This completes the random feasible tour generator 
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procedure. The second part of the algorithm generates an MPS-opt schedule by 
considering all feasible repositionings of a given aircraft, starting with the 
first, and the associated time required to land the aircraft; the best of these is 
then chosen. This is done for each aircraft and is then repeated until no more 
improvement is possible. In view of the definition above, it should be clear that 
the schedule at this point is MPS-opt. 

c FCFS 
ORDER 

The entire process is repeated a number of times with the best result to date 
always being stored. 

RANDOM 
FEASl B LE 

GENERATOR 

MPS - OPT ~ OUTPUT 
TOUR GENERATOR SCHEDULE 

L 

It has been found that any given MPS-opt solution has a nontrivial probabil- 
ity, Ps, of being the optimal solution for that set of constraints. 
given problem one can estimate Ps (appendix B) and produce K MPS-opt schedules, 
from random initial starts, choosing K such that 1 - ( 1  - Ps)K is as close to 
unity as desired. 

Thus, for any 

Up to this stage the scheduling problem has been essentially modeled as an 
open-loop system; that is, let the system run until a large number of outputs are 
collected and store the best of these. The system described so far is illustrated 
in figure 2. However, the following observations are made: 

1. Many of the locally optimal solutions are produced more than once. 

2. After a number, q,  of locally optimal solutions have been produced note 
that the set !Z of elements common to all q of these solutions is, in general, 
not empty. 

Based on these observations and incorporating a type of feedback, the following two 
procedures have the potential of improving the efficiency of the algorithm. 

The Checkout Avoidance Procedure 

At some stage, t, during the MPS-opt-producing algorithm a schedule S of 
cost C is produced to which no further improvement can be made. Denote by S a 
local optimum and the time from t until this determination is made is called the 
checkout time. If at a later stage we arrive at schedule S there is no need to go 
through the checkout procedure. This typically reduces run time by about 30%. 
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The Reduction Procedure 

After producing q locally optimal solutions, consider the set a of aircraft 
which maintain the same position in the schedule in each of them. Intuitively it 
seems that for large q any element of the set a is very likely to be an element 
of the optimal solution. Thus the reduction procedure is as follows. 

Produce a number of locally optimal solutions (approximately five solutions 
seems to be appropriate) and compute the set 
these. Then, restrict all further considered schedules to contain a .  If an ele- 
ment of a is also an element of the optimal solution then it is called proper 
reduction; otherwise it is referred to as improper reduction. To avoid improper 
reduction several independent runs using this procedure should be done. 

a which is the intersection of 

This procedure is not currently incorporated into the algorithm for the follow- 
ing reasons. With small values of MPS the optimal solution has generally been 
found by the time five local optimums have been generated; hence, there is no need 
for it in this case. For large values of MPS, on the other hand, the routine is 
plagued by frequent improper reduction or no reduction at all. 

Consider one final potential improvement. While searching for A-opt solu- 
tions with x = MPS, it is noticed that many schedules that are examined in fact 
violate the MPS constraint. For example, take some feasible schedule 

1-2-4-3-5-6 

and consider whether the schedule can be improved by moving the aircraft in position 
No. 3 (i.e., aircraft No. 41, assuming MPS = 1 .  Thus, the following schedules 
would be examined: 

and 
1-4-2-3-5-6 

1-2-3-4-5-6 

However, clearly the first of these violates the MPS constraint (aircraft No. 4 is 
in slot No. 2) and another possible legal schedule, 

1-2-3-5-4-6 

would not be considered. Hence the following definition of MPS-opt is more nat- 
ural and was adopted. 

Definition: A schedule is called MPS-opt if and only if moving any aircraft 
to another feasible position does not improve the schedule. 

Finally, in the algorithm for producing MPS-opt schedules, two optimum- 
seeking methods are possible, a random descent or a steepest descent procedure. A 
random descent procedure makes the first improvement to the schedule that is found 
while the steepest descent procedure makes the best move possible at each step. 
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After collecting data on run time and quality of solution for each method, the 
random descent technique was adopted. 
the likelihood of obtaining the optimal solution is not substantially affected. 

Run time is usually reduced by over 50% while 

RESULTS 

When evaluating an algorithm for aircraft scheduling there are key factors--the 
net improvement in capacity over FCFS and the computation time required by the 
algorithm. To test the first of these an aircraft mix consisting of 15% small 
aircraft, with remainder equally distributed between large and heavy, was selected 
as a basis of comparison. 
ing 40 aircraft. Table 2 provides a comparison of the percentage increase in air- 
port throughput compared to FCFS for a method based on Roger Dear's methodology 
(DEAR) and MPS-opt. In DEAR, a window of 2 * MPS + 1 aircraft is considered and 
that portion of the schedule is optimized by complete enumeration, the first air- 
craft in this window is then pushed out and a new one enters at the bottom. This 
process continues until the end of the schedule is reached. A maximum position 
shift of three slots was determined to be the practical limit and is the greatest 
value examined in this paper. The computer program, however, does not require any 
modification for other values of MPS. 

Twenty different sample problems were used, each contain- 

TABLE 2.- COMPARISON OF DEAR AND 
MPS-OPT METHODS 

Best of 
One run 500 runs 

MPS DEAR MPS-Opt MPS-Opt 

1 1.81 2.36 2.84 
2 2.98 3.88 4.65 
3 4.20 4.24 5.70 

The other important factor is computation time which is shown in figure 3 as a 
function of MPS and problem size. Computation time is in seconds of CPU time on 
the VAX for 500 runs. 

The important feature of this graph is that the computation time grows approxi- 
mately linearly with both problem size and MPS over the range studied. 

Up to this point it has been assumed that aircraft following the same approach 
route would be prohibited from passing one another. This restriction, however, may 
not be entirely necessary in practice and increased throughput may be achieved by 
relaxing the constraints. Consider the following three alternative rules: 
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Figure 3 . -  Computation time for varying values of MPS. 

1. The nominal condition in which aircraft on the same route may not pass one 
another . 

2. The condition in which aircraft on the same route may switch positions with 
their immediate neighbors, but other switches are not permitted. 

3 .  The condition in which no restriction is placed on aircraft switching based 
on their route. 

These rules were applied to a route geometry based on arrival traffic to Denver's 
Stapleton airport, in order to understand the effect of various route passing con- 
straints on capacity. The figure plots increase 
in throughput as a function of MPS, for each rule. As seen from the figure, relax- 
ing the passing constraint only slightly improves throughput. 

The results are shown in figure 4. 

ALTERNATIVE OBJECTIVE FUNCTIONS FOR FUTURE STUDY 

There are a number of features that could be included into a scheduling algo- 
rithm which may greatly increase its usefulness to the ATC community. The two that 
come most readily to mind are a time varying objective function and a prioritizing 
system. 

It is becoming common these days for airline companies to engage in a practice 
referred to as "hubbing" which has the effect of creating very nonuniform arrival 
rates throughout the day. Certain periods of the day may be very busy, while at 
other times the airport may be operating well below capacity. 
periods (i.e., when the incoming arrival rate exceeds airport capacity) the objec- 
tive function of maximizing throughput should be used. 
day, however, another objective function, such as minimizing total delay, may be 
more appropriate. 

During the busy 

During other times of the 
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Another feature that would not be difficult to implement is one involving a 
system of priorities. For instance, it may be more desirable for small aircraft to 
absorb delays than for large, commercial traffic. 
a new objective function, g, to minimize total delay: 

This could be handled by creating 

+ PLDL + PHDH Ps = Small-plane priority g = PSDS 

PL = Large-plane priority 

PH = Heavy-plane priority 

= Small-plane delay DS 

DL = Large-plane delay 

DH = Heavy-plane delay 

This equation could also be extended to the point where each aircraft is assigned 
its own priority level. 

( 3 )  

The disadvantage of this approach is that minimizing total delay is not the 
Hence, one may wish to consider simply same as maximizing airport throughput. 

assigning different values of MPS to different aircraft types. Also, there is no 
reason that the maximum forward shift allowed must be equal to the largest permitted 
rearward move. 
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CONCLUSIONS 

After examining a number of possible algorithms for aircraft scheduling in the 

Among the reasons for this selection is the 
near terminal area the Lin-Kernighan algorithm was selected as being exceptionally 
well suited to the scheduling problem. 
natural way in which the MPS constraint can be incorporated. 

A modified version of the algorithm was implemented in Fortran and it was 
tested on over two hundred sample problems. It was found that repeated runs on a 
problem from random initial starts leads to a high probability of finding the opti- 
mal solution among the locally optimal solutions generated. Furthermore, the algo- 
rithm is robust in the sense that in none of the test cases did it ever fail to 
generate a solution nor did it ever generate an infeasible solution. 

Another advantage of this type of heuristic approach is that it is easy to 
trade off the quality of solution (in terms of best solution found or probability of 
obtaining the optimal solution) for run time. 
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APPENDIX A 

PROGRAM OPERATION 

The algorithm described was coded for the VAX in Fortran. It is written as a 
subroutine for Branch (a program written by Monica Alcabin, NASA Ames Research 
Center, that generates random schedules) and may be called anytime after the "sched- 
ule" subroutine. 
of MPS. The output consists of the percent increase in landing rate for the first 
run-through of the procedure as well as for the best of 500 runs. 

The only additional input required by the program is the value 

Also displayed are the first occurrences of this result and how often it 
occurred. While the program is running it displays the current iteration number and 
the cost of the associated schedule, a blank line indicates the previous solution is 
the best located to date. Iterations which are not followed all the way through 
(see the section on checkout avoidance) are not displayed. 
stored in Eff.dat. 

The final schedule is 

The program is named Eff.for and is fairly heavily documented. There is also a 
program called Dear.for which operates in an analogous fashion and implements the 
methodology proposed by Roger Dear. 
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C 
C 
C 
C 
C 
C 
C 

, C 
C 
C 
C 
C 
C 
C 
C 
C 

I 

I 

SUBROUTINE OPT 

This subroutine implements an algorithm for improving aircraft 
landing schedules in terms of aircraft throughput. This subroutine 
should be called from BRANCH, a program written by Monica Alcabin 
and available on her account. This program reads in the list of 
aircraft, their respective routes and weights and then produces 
a new schedule which is stored in Eff.dat. 
This work was done at NASA Ames Research Center, summer 1987, by 
Robert Luenberger. 

The five weight classes are: 1 - Heavy equipped 
2 - Large equipped 
3 - Heavy unequipped 
4 - Large unequipped 
7 - Small unequipped 

C O M M ~ N  NAC,IACTP(~OO),IACST(~OO),IFFX(~OO),KTABLE(~~~) 

COMMON IRW(~OO),RND(~OO),DSEED,IEVER(~~~) 
COMMON ICORD(lOO),IWT(lOO),IBSTORD(lOO),ICL(lOO) 

DIMENSION ICOST(7,7),JSTORE(6,10O),JSCORE(6),ICHECK(400) 

OPEN (UNIT=4,NAME= 'EFF.DAT',TYPE= 'NEW') 

C Set up the cost matrix 

DATA (1C0ST(1,J),J=1,7)/104,125,2*0,114,135,230/ 
DATA (ICOST(2,J),J=1,7)/2*78,2*0,2*88,170/ 
DATA (ICOST(5,J),J-l,7)/ll4,135,2*0,124,145,240/ 
DATA (ICOST(6,J),J=1,7)/2*88,2*0,2*98,180/ 
DATA (ICOST(7,J),J=l,7)/2*88,2*0,2*98,130/ 

C Initially, all the aircraft are in FCFS-RW order. 

1 TYPE *,'WHAT IS THE VALUE OF MPS?' 
ACCEPT *,MPS 
IF (MPS.EQ.0) THEN 

GO TO 300 
END IF 

ITIME=O 

DO K=1,400 

END DO 
ICHECK(K)=O 

I C 
C 

Now we set it such that IWT contains the weight class and 
IRW contains the approach path information. 

I 
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DO 1=9,NAC+8 
J-1-8 
IWT(J)-IACTP(I) 
IRW(J)=IFFX(I) 
ICL(J)-IACST(I) 

END DO 

INIT-0 
DO 1-1,NAC-1 

END DO 
INIT-INIT+ICOST(IWT(I~,IWT(I+~)) 

3 DO I-1,NAC 
ICORD(I)-I 
IBSTORD(1)-I 

END DO 

ITIME-ITIME+l 

IF (ITIME.EQ.1) THEN 

END IF 
GO TO 4 

IF (ITIME.EQ.501) THEN 

END IF 
GO TO 250 

C 
C 
C 

Produce a somewhat randomized version of the initial tour 

DO J-1,MPS 
DSEED=(DSEED+1.5)/3 
CALL GGUBS(DSEED,NAC,RND) 
K=3 
IF (REAL(ITIME+J)/z,EQ.(ITIME+J)/2) THEN 

K=2 
END IF 
DO I-K,NAC-1,2 

IF (IRW(ICORD(I)).NE.IRW(ICORD(I+l))) THEN 
IF (ICL(ICORD(I)).NE.ICL(ICORD(I+l))) THEN 
IF (RND(I).LT.o.~) THEN 

ICORD(I)-ICORD(I+~) 
IBSTORD(I)=ICORD(I+l) 
ICORD(I+~)-IDUM 
IBSTORD(I+~)-IDUM 

IDUM-ICORD(1) 

END IF 
END IF 

END IF 
END DO 

END DO 
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C 
C 
C 
C 
C 

* 
* Now the MPS-opt improvement s tu f f  s t a r t s  

4 IMARK-0 
IB=2 

5 DO I=IB,NAC-1 

IBACK-ICORD(I)-I 

C F i r s t  w e  must f ind  the i n i t i a l  cost  of t h i s  block 

ISTART-0 
DO K-I-1-MPS+IBACK,I+MPS+l+IBACK 

ISTART-ISTART+ICOST(IWT(ICORD(K)),IWT(ICORD(K+~))) 

C 
C ISTEP w i l l  cover the range of possible  locations for the 
C curren t  aircraft .  
C 

END DO 

DO ISTEP-IBACK-MPS,IBACK+MPS 
IF (((I+ISTEP).GT.NAC).OR.((I+ISTEP).LT.2)) THEN 

END IF 
GO TO 10 

C 
C Do the 'throw' - foward moves 
C 

ISTORE=ICORD(I) 
IF (ISTEP.GT.0) THEN 

DO K=I,I+ISTEP-1 

END DO 
ICORD(I+ISTEP)-ISTORE 

ICORD(K)=ICORD(K+~) 

END IF 
C 
C Do the 'throw' - rearward moves 
C 

IF (ISTEP.LT.0) THEN 
ISTORE=ICORD(I) 
DO K=I,I+ISTEP+l,-l 

ICORD(K)=ICORD(K-~) 
END DO 
ICORD(I+ISTEP)=ISTORE 

END IF 
C 
C Evaluate t h i s  arrangement 
C 

ICST=O 
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DO KPI-1-MPS+IBACK,I+MPS+l+IBACK 
ICST-ICST+ICOST(IWT(ICORD(K)),IWT(ICORD(K+~))) 

END DO 
IDIFF-ICST-ISTART 
IF (IDIFF.GE.0) THEN 

END IF 
GO TO 8 

C 
C 
C 

Check the legality of the arrangement--MPS constraint 

LEGAL- 1 
DO K=I-1-MPS+IBACK,I+MPS+l+IBACK 

IF (ABS(K-ICORD(K)).GT.MPS) THEN 
LEGAL-0 
GO TO 8 

END IF 
END DO 

C 
C 
C 

Check the legality of the arrangement--Runway constraint 
and fairness to aircraft of the same type 

DO J-I-1-MPS+IBACK,I+MPS+l+IBACK 
DO K=J+l,I+MPS+B 

IF (IRW(ICORD(J)).EQ.IRW(ICORD(K))) THEN 
IF (ICORD(J).GT.ICORD(K)) THEN 

LEGAL-0 
GO TO 8 

END IF 
END IF 
IF (ICL(ICORD(J)).EQ.ICL(ICORD(K))) THEN 

IF (ICORD(J).GT.ICORD(K)) THEN 
LEGAL-0 
GO TO 8 

END IF 
END IF 

END DO 
END DO 

C 

C 
C If the move 
C 

improves the schedule and is legal -- do it. 

IF ((IDIFF.LT.O).AND.(LEGAL.EQ.l)) THEN 
IF (ISTEP.GT.0) THEN 

IST~RE-IBSTORD(I) 
DO K-I,I+ISTEP-l 

IBSTORD(K)-IBSTORD(K+~) 
END DO 
IBSTORD(I+ISTEP)-ISTORE 

END IF 

IF (ISTEP.LT.0) THEN 
ISTORE-IBSTORD~I) 
DO K-I,I+ISTEP+l,-l 
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IBSTORD(K)=IBSTORD(K-1) 
END DO 
IBSTORD(I+ISTEP)-ISTORE 

END IF 
C 
C S t o r e  the  c u r r e n t  best order 
C 

IBSTORD(~)-~ 
DO K-I-1-MPS+IBACK,I+MPS+l+IBACK 

ICORD(K)-IBSTORD(K) 
END DO 
IMARK-1 
IB-I 
GO TO 5 

END IF 
C 
C If w e  are a t  t h i s  stage the move that was j u s t  eva lua ted  w i l l  
C not be made and hence w e  need t o  undo It 
C 
8 

10 
15 

C 
C 
C 
C 

C 

DO K=I+IBACK-MPS,I+IBACK+MPS 

END DO 
ICORD(K)-IBSTORD(K) 

END DO 
END DO 

If no more good moves were made on the  last  pass  through the  
schedule t h e n  w e  have reached a l o c a l  optimum and w i l l  s t o p  

IF (IMARK.EQ.0) THEN 

END IF 
GO TO 100 

C Here w e  see i f  the c u r r e n t  schedule has been eva lua ted  In an  
C earlier run through. If so, w e  do not  waste t i m e  on f u r t h e r  
C evalua t ion .  
C 

C IBSTORD(l)-l 
IFC-0 

DO K-1,NAC-1 
IFC-IFC+ICOST(IWT(IBSTORD(K)),IWT(IBSTORD(K+~))) 

END DO 
IF ((ICHECK(IN1T-IFC)).EQ.l) THEN 

END IF 
GO TO 150 

C 
C 
C the schedule aga in ,  from the  beginning 
C 

If a move was made dur ing  the  las t  pass  t h e n  w e  w i l l  go through 

IB=2 
IMARK-0 
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C 

100 

C 
c If 
C 

C 

GO TO 5 
C 
C Here w e  compute the f i n a l  cost  for t h i s  so lut ion 

IFC-0 

DO IC-1,NAC-1 

END DO 
TYPE *,ITIME,IFC 

IBSTORD(~)=~ 

IFC-IFC+ICOST(IWT(IBSTORD(K)),IWT(IBSTORD(K+~))) 

ICHECK(INIT-IFC)-~ 

t h i s  i s  the best solution t o  date then w e  s tore  it 

IF ((IFC.LT.IBEVER).OR.(ITIME.EQ.l)) THEN 
IBEVER-IFC 
IFOIS-ITIME 
TYPE *,IFOIS 
ZHAP-0 
DO K-1,NAC 

IEVER(K)-IBSTORD(K) 
END DO 

END IF 

C 
C 
150 IF (1FC.EQ.IBEVER) THEN 

ZHAP-ZHAP+l 

Keep track of how many times t h i s  solution has occured 

END IF 
C 
C Print 
C 

250 

251 
252 

IF 

out the resu l t s  

(ITIME.EQ.1) THEN 
TYPE *,'ONE RUN' 
TYPE * , ' I N I T I A L  COST: ' , I N I T  
TYPE *,'FINAL COST :',IBEVER 
TYPE * . '  ' 
TYPE * , ' %  SAVINGS: ',lOO*(REAL(INIT)-REAL(IBEVER))/REAL(IBEVER) 

END IF 
GO TO 3 
TYPE * , '  ' 
TYPE *,'BEST ORDER: 
IEVER(1)=1 
DO K-1,NAC 

TYPE * ,  IEVER(K) 
WRITE (4,251) IEVER(K) 

END DO 
WRITE (4,252) INIT,IBEVER 
FORMAT (2X,I2) 
FORMAT (2X,I4,4X,I4) 
TYPE *,'WEIGHTS:' 
DO K-1,NAC 
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TYPE *,IWT(IEVER(K)) 
END DO 

TYPE * , '  ' 
TYPE *,'BEST OF 500 RUNS' 
TYPE *,'INITIAL COST: ',INIT 
TYPE *,'FINAL COST: ',IBEVER 
TYPE * , '  ' 

I 

C 
C Note that the formula below for 'savings' has been converted to reflect 
C airport throughput savings, not time savings. 
C 

TYPE * , ' %  SAVINGS: ',lOO*(REAL(INIT)-REAL(IBEVER))/REAL(IBEVER) 
TYPE * , '  ' 
TYPE *,'IT TOOK :',IFOIS 
TYPE * , ' %  OF TIME IT OCCURED: ',ZHAP/5 
GO TO 1 

300 END 
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APPENDIX B 

PROBABILITY OF OPTIMAL SOLUTION 

A HEUR STIC ESTIMATE OF THE PROBABILITY OF OBTAINING THE OPT1 .... L UT I ON 

Unfortunately, as opposed to the TSP, there are no classic test cases for the 
aircraft scheduling problem that one can use to make comparisons among various 
techniques. To try to compensate for this, several test problems were devised and 
run on a variety of different algorithms which were available. 
was then conjectured to be the optimal solution and will be treated as such in the 
discussion that follows. Often, a number of different algorithms produced the same 
best solution, thereby providing at least circumstantial evidence that it is indeed 
the optimal solution. Further, five problems for each MPS of one, two, and three, 
and their associated conjectured optimal solutions will be presented with the hope 
that other authors will either improve upon them or verify their optimality. 
tually, these problems will be able to serve as benchmark cases. For each of these, 
we set the percentage of small aircraft at 15% and assume that the rest of the 
traffic is evenly distributed between large and heavy aircraft; each set of problems 
consists of 40 aircraft. 

The best of these 

Even- 

Here some empirical data on the probability that an MPS-opt solution is in 
fact optimal (the best-known solution) is presented. Over 200 problems were run, 
divided equally among MPS values of one, two, and three, and involving various 
numbers of aircraft. 
obtain the best-known solution in less than 3% of the cases. 
however, these best-known solutions may not in fact be optimal. 

The algorithm was run 500 times for each case and it failed to 
To emphasize again, 

The probability that a particular run of the algorithm will produce the best- 
known solution, Ps, varies greatly from problem to problem, but is loosely a func- 
tion of MPS and problem size. Empirical data suggest that 

Ps - 0.8(0.5) MPS 
and that it is largely independent of problem size over the range studied. 

To help provide a standard for comparison among various scheduling algorithms 
the following five conjectured optimal solutions are presented. These test cases 
can be generated by running Branch (written by Monica Alcabin, NASA Ames Research 
Center) as given in table B-1. 

Table B-1 indicates the percentage increase in landing rate for each test 
case. 
ning the program described in appendix A .  
nal runway constraint condition given in the problem statement. 

In each case, the schedule which obtains this solution can be found by run- 
These solutions all adhere to the origi- 
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TABLE B-1.- PERCENT INCREASE 
IN THROUGHPUT FOR FIVE TEST 
CASES WITH VARYING VALUES 
OF MPS 

Number of aircraft: 40 
Number of routes: 5 
Percent small: 15 
Percent large: 42.5 
Percent heavy: 42.5 
Random number seed: 1-5 

MPS 
SEED 1 2 3 

1 2.44 5.78 5.78 
2 3.25 4.53 4.53 
3 3.30 6.02 6.52 
4 1.85 2.80 3.10 
5 5.69 6.00 7.17 

ON COMPARING HEURISTIC ALGORITHMS 

Consider the situation where we can devote T seconds of computer time to a 
combinatorial optimization problem. If a given algorithm cannot provide a solution 
within this time it is deemed unacceptable and is removed from consideration. Now, 
assume that one wishes to compare two heuristic algorithms 
produces a number of locally optimal solutions in time T. Algorithm A1 produces 
solutions which are optimal with probability P1 in time tl while algorithm 
A2 requires t2 to produce solutions which are optimal with probability P2. To 
get a good estimate of the 
number of sample problems. The probability of A, producing an optimal solution in 
time T is: 

A1 and A2 and that each 

I 

Pi's and tils the algorithms must be run on a large 

kl Pi = 1 - (1 - P1) , kl = T/tl 

Similarly, 

k2 P; = 1 - (1 - P2) , k2 = T/t2 

Thus, A1 is considered to be superior to A2 if Pi > P;. That is, 

T/ t2 T/tl 
A1 > A2 if (1 - P2) > (1 - P1) 
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